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Figure 1: Illustration of GRAND with DropNode as the perturbation method. GRAND designs
random propagation (a) to generate multiple graph data augmentations (b), which are further used as
consistency regularization (c) for semi-supervised learning.
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Figure 1: Our proposed deep Graph Contrastive representation learning with Adaptive augmentation (GCA) model. We first =
I=

generate two graph views via stochastic anugmentation that is adaptive to the graph structure and attributes. Then, the two
graphs are fed into a shared Graph Neural Network (GNN) to learn representations. We train the model with a contrastive
objective, which pulls representations of one node together while pushing node representations away from other node rep-
resentations in the two views. N.B., we define the negative samples as all other nodes in the two views. Therefore, negative
samples are from two sources, intra-view (in purple) and inter-view nodes (in red).
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Figure 1: Our proposed deep Graph Contrastive representation learning with Adaptive augmentation (GCA) model. We first
generate two graph views via stochastic anugmentation that is adaptive to the graph structure and attributes. Then, the two
graphs are fed into a shared Graph Neural Network (GNN) to learn representations. We train the model with a contrastive
objective, which pulls representations of one node together while pushing node representations away from other node rep-
resentations in the two views. N.B., we define the negative samples as all other nodes in the two views. Therefore, negative
samples are from two sources, intra-view (in purple) and inter-view nodes (in red). (

graph. Speciﬁca]lyrﬂn the topology level|we design augmentation
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features by adding more noise to unimportant node features, to en-
force the model to recognize underlying semantic information. We y
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MethOd above observations, we propose the following loss to be op-
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Figure 2: An illustration of the proposed model DEAL. L=601Lp(Z;)+602Lp(Za) + 03Latign(Zs, Za),  (9)
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Figure 1: The framework of our approach. In (a), the original graph is adopted as the input of (b) the localized GCNs and (c)

classification
result
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the hierarchical GCNs, respectively, where (c) is utilized to capture the global information and serves as the augmented view o

(b). In (d), the node representations are generated from (b) and (c), and then constitute the contrastive loss and graph generativ

loss collaboratively, in order to provide additional supervision signals to improve the representation learning process. In (e), the L£22(x;) = —log
classification result is acquired via integrating the outputs of (b) and (c), where the cross-entropy loss is used to penalize the
difference between the model prediction and the given labels of the initially labeled nodes.
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Figure 1: The overall framework of MERIT. Through graph augmentations, we construct two graph views, based on which an online network
and a target network are employed to generate node representations for each view. A multi-scale contrastive learning scheme, which utilizes . 1 2
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Figure 1: The overview of our proposed CoGSL. (a) Model framework. (b) View estimator. (c) Adaptive fusion.
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D Nod Ed E Cla
CS ([Shchur er al., 2018]) 18333 81,894 6,805 aaset FRofs B Tee Teee
PPI ([Zitnik and Leskovec, 20171) 1,767 16,159 50 Wiki-CS* 11,701 216,123 300 10
Cora ([McCallum et al., 2000]) 2,708 5,278 1,433 Amazon-Computers” 13,752 245,861 767 10
CiteSeer ([Sen ef al., 2008]) 3,327 4,552 3,703 Amazon-Photo’ 7,650 119,081 745 8
PubMed ([Namata er al., 2012]) 19717 44,324 500 CDaUthOT‘CS_q 18333 81,894 6,805 15
Computers ([McAuley et al., 2015]) 13,752 245,861 767 Coauthor-Physics® 34,493 247,962 8,415 5
Photo ([McAuley et al., 2015]) 7,650 119,081 745 ! https://github.com/pmernyei/wiki- cs- dataset/raw /master/dataset
2 https://github.com/shchur/gnn-benchmarly/ raw/master/data/npz famazon_electronics_
IJCAI_2021_Inductive Link Prediction for Nodes Having Only Attribute Information Fon e
https://github.com/shehur/gnn-benchmarly/ raw/master/data/npz famazon_electronics_
photonpz
4 https://github.com/shehur/gnn-benchmarly/raw/master/data/npe /ms_academic_csnpz
: https://github.com/shchur/gnn-benchmarlk/raw/master/data/npz /ms_academic_phynpz
Datasets Nodes Edges Features Classes WWW_2021_Graph Contrastive Learning with Adaptive Augmentation
Cora 2,708 5,429 1,433 i
CiteSeer 3.327 4,732 3,703 6
PubMed 19,717 44,338 500 i
Amazon Computers 13,752 245,861 767 10
Amazon Photo 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15
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A Dual-Channel Knowledge Distillation Framework for Node Classification(ours)



